Kā atcerēties sin un cos īpašās vērtības

Šajā video - vairāki ceļi, kā atsaukt atmiņā sin un cos īpašās vērtības. Piemēram, izmantojot virkni $$egin{equation} rac{\sqrt{0}}{2}\end{equation}, egin{equation} rac{\sqrt{1}}{2}\end{equation}, egin{equation} rac{\sqrt{2}}{2}\end{equation}, egin{equation} rac{\sqrt{3}}{2}\end{equation}, egin{equation} rac{\sqrt{4}}{2}\end{equation}$$ un taisnleņķa trijstūrus.

α, °30°45°60°90°
α, radiānos0$$egin{equation} rac{\pi}{6}\end{equation}$$$$egin{equation} rac{\pi}{4}\end{equation}$$$$egin{equation} rac{\pi}{3}\end{equation}$$$$egin{equation} rac{\pi}{2}\end{equation}$$
sinα$$egin{equation} rac{\sqrt{0}}{2}\end{equation}$$$$egin{equation} rac{\sqrt{1}}{2}\end{equation}$$$$egin{equation} rac{\sqrt{2}}{2}\end{equation}$$$$egin{equation} rac{\sqrt{3}}{2}\end{equation}$$$$egin{equation} rac{\sqrt{4}}{2}\end{equation}$$
sinα0$$egin{equation} rac{1}{2}\end{equation}$$$$egin{equation} rac{\sqrt{2}}{2}\end{equation}$$$$egin{equation} rac{\sqrt{3}}{2}\end{equation}$$1
cosα1$$egin{equation} rac{\sqrt{3}}{2}\end{equation}$$$$egin{equation} rac{\sqrt{2}}{2}\end{equation}$$$$egin{equation} rac{1}{2}\end{equation}$$0