
Kā atcerēties sin un cos īpašās vērtības
Šajā video - vairāki ceļi, kā atsaukt atmiņā sin un cos īpašās vērtības. Piemēram, izmantojot virkni $$egin{equation} rac{\sqrt{0}}{2}\end{equation}, egin{equation} rac{\sqrt{1}}{2}\end{equation}, egin{equation} rac{\sqrt{2}}{2}\end{equation}, egin{equation} rac{\sqrt{3}}{2}\end{equation}, egin{equation} rac{\sqrt{4}}{2}\end{equation}$$ un taisnleņķa trijstūrus.α, ° | 0° | 30° | 45° | 60° | 90° |
α, radiānos | 0 | $$egin{equation} rac{\pi}{6}\end{equation}$$ | $$egin{equation} rac{\pi}{4}\end{equation}$$ | $$egin{equation} rac{\pi}{3}\end{equation}$$ | $$egin{equation} rac{\pi}{2}\end{equation}$$ |
sinα | $$egin{equation} rac{\sqrt{0}}{2}\end{equation}$$ | $$egin{equation} rac{\sqrt{1}}{2}\end{equation}$$ | $$egin{equation} rac{\sqrt{2}}{2}\end{equation}$$ | $$egin{equation} rac{\sqrt{3}}{2}\end{equation}$$ | $$egin{equation} rac{\sqrt{4}}{2}\end{equation}$$ |
sinα | 0 | $$egin{equation} rac{1}{2}\end{equation}$$ | $$egin{equation} rac{\sqrt{2}}{2}\end{equation}$$ | $$egin{equation} rac{\sqrt{3}}{2}\end{equation}$$ | 1 |
cosα | 1 | $$egin{equation} rac{\sqrt{3}}{2}\end{equation}$$ | $$egin{equation} rac{\sqrt{2}}{2}\end{equation}$$ | $$egin{equation} rac{1}{2}\end{equation}$$ | 0 |